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A Tomita (standard) Hilbert space representation of a physical system with a 
total phase space is presented, both for the classical and tbr the quantal case. 
The dynamics of such a system, subject to a regular series of linear kicks, is 
derived in a discrete-time form, and is shown to be identical to the 
Benatti-Narnhofer-Sewell quantum Arnol'd cat map in the quantum case. It is 
shown that this quantum system is chaotic in the sense of having exponentially 
decaying autocorrelation functions. 

1. INTRODUCTION 

The Arnol'd cat map is one of the simplest possible prototypes of a 
chaotic Hamiltonian system. It can be interpreted as a discrete-time represen- 
tation of a mechanical system subject to regular kicks by a repulsive linear 
Zorce (Ford et  al., 1991). The mathematical simplicity of the system combined 
with its strong ergodic and stochastic properties makes it a suitable object 
for the study of the behavior of a quantum system with a chaotic classical 
counterpart. However, the task of finding the proper method of quantization 
for this system is far from trivial, due to the confinement of both the position 
and the momentum space. Thus, there exist several quantum cat map models 
(e.g., Berry et  al., 1979; Ford e t  al., 1991). One of these is presented by 
Benatti et  al. (1991), hereafter referred to as the BNS model. This model is 
further described by Benatti (1993). An interesting aspect of this model is 
that it retains chaotic properties after quantization, in particular for certain 
values of h. BNS do not comment on the possible connection between 
their abstract model and the physical linearly kicked system, as they restrict 
themselves to considerations of the mathematical properties of the model. 
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In this paper, I investigate the relation between the abstract BNS model 
and the physical linearly kicked system, demonstrating that the model can 
be considered as a quantized version of such a system by identifying the 
operators representing the physical observables. Then I present a further 
investigation of the stochastic properties of the quantum system. While BNS 
prove that the system is only a K-system in the strict, algebraic sense for 
certain values of h, I show that for all h the system is chaotic in the weaker 
sense of having an exponential decay of the autocorrelation. I conclude that 
the quantum correspondent to a confined classical system may retain strong 
stochastic properties, although the strict confinement turns out to be lost due 
to the uncertainty principle. 

In the following section, I summarize the structure of the classical and 
quantal toral phase space system, considering in particular the operators 
having a physical interpretation. In Section 3, I derive the Arnol'd cat map 
dynamics from physical assumptions. Section 4 shows that the autocorrelation 
function decays exponentially. 

2. THE TOMITA REPRESENTATION OF THE TORAL SYSTEM 

First, we present a model of a mechanical system with the torus T ~ = 
[0, 1)z, equipped with addition and multiplication modulo 1, as a phase space. 
The area of the torus has the dimension of action. To define an appropriate 
Tomita, or standard, representation of this system, we apply essentially the 
definition of the Wigner representation of Grelland (1993), with a few modifi- 
cations to deal with the confined phase space. 

The Tomita Hilbert space H of the system is characterized by the continu- 
ous Wigner basis 

Bw = {Iqpllq, p e [0, 1]} (t) 

where I...] is the appropriate notation for a ket vector of this kind of representa- 
tion. This basis gives rise to a representation in terms of the state functions 
f ( q ,  p) = [qp If]. We also introduce the countable Fourier basis 

13 F = {Ikl]Ik, l e Z; [qplkl] = e 2"ni(qk+pl)} (2) 

On H we define the classical position and momentum Qo, Po by the operators 

aolqp] = qlqp] (3) 

Polqp] = ptqp] (4) 

Note that for this system these operators are bounded and are defined on the 
whole of H. The (mixed) states of the classical system are represented by 
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positive, real, normalized functions [qplf] corresponding to probability densi- 
ties P(q, p) = [qplf] 2 in phase space. 

To obtain the quantum position and momentum, it is convenient to define 
the auxiliary operators 

Dlkl] = -2'rrklkl] (5) 

El kl] = - 2,rrllkl] (6) 

These operators are unbounded and have a restricted domain. In the Wigner 
basis they act like derivation operators 

[qplOlf] = i d/dq [qplf] (7) 

[qplEJf] = i d/dp [qplf] (8) 

on the domains 

D(D) = {If]l[qplf] ~ AC[O, 11 ® L2[O, 1] & [0pif] = [lplf]} (9) 

D(E) = {If]l[qplf] E L2[I, 0l ®AC[0 ,  l] & [q0tf] = [qllf]} (10) 

where AC[ 1, 0] is the space of absolutely continuous functions on the interval. 
Both these operators have the countable, unbounded, nondegenerate spectrum 
~r = 2'rrZ. 

We are now in a posiition to define the quantum observables by the 
operators 

Q = Qo + (h/2)E (I 1) 

P = Po - (h/2)D (12) 

with the Born-Heisenberg commutation property 

[Q, P]lf] = ihlf] VIf] ~ D([Q, P]) (13) 

Observe that h is measured in units of the phase space area. For these 
operators, the domains are 

D(Q) = D(E) (14) 

D(P) = D(D) (15) 

D([Q, P ] ) =  {lf]tP~fJ E D(Q)& QIf] E D(P)} 

= {If]l[qplf] ~ AC[O, 1] QAC[O,  1]; 

[001f] -- [01tf] = [101f] = [111f] -- 0} (16) 

The spectra of the position and momentum operators are determined by the 
size of the phase space, reflected in the choice of  units such that the phase 
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space becomes the unit square. If the size is such that h/2 -< 1, the spectra 
of Q and P are both R. This lack of physical confinement reflected in the 
spectra of Q and P in the quantum model may be surprising, but it is the 
only possibility consistent with the uncertainty relations. One cannot physi- 
cally strictly confine a quantum system, since it can penetrate any potential 
barrier, but one can construct quantum systems with a confined classical 
analogue. 

The connection between the representation described and the operator- 
based formalism of BNS is obtained by defining the unitary group 
{W(n, m)ln, m E Z}: 

W(n, m) = exp[2'rr(Qn + Pm)] (17) 

which generates the same group as does the pair {Q, P}. It is easily seen 
that these operators have the ladder property when applied to the Fourier basis, 

W(n, m)lk, 1] = Ik + n, 1 + m] (18) 

The group {W,,(n, m)} of BNS contains the operators 

Wo(n, m) = exp[2"rr(Q,,n + Pom)] (19) 

which generates the commutative "classical algebra." As h ---> 0, W(n, m) 
---> Wo(n, m) strongly. 

3. THE EQUATION OF MOTION 

The linearly kicked system (LKS) (also called "the kicked oscillator") 
has the time-dependent Hamiltonian (Ford et al., 1991; Benatti, 1993) 

H(t) = P212m - kQ2/2 Ej ~(j - t/T) (20) 

The force switched on by the delta functions at regular intervals is linear 
and repulsive, generated by a negative quadratic potential. Applying the 
Tomita representation of both classical and quantum mechanics, an operator 
formalism is used in both cases. Thus, the following operator-based derivation 
of the equations of motion applies to both cases, as no commutator is involved. 
For the classical case, our derivation is equivalent to that of Ford et al. 
(1991). For the quantum case, the derivation leads to the same result as the 
one presented by Berry et al. (1979) in the Heisenberg picture, where the 
representation is unspecified. We show, however, that it is unnecessary to 
assume a priori any "turning off" of the kinetic term during the kick, as the 
contribution from this term proves to be negligible. 

Applying the operator formalism, we have the operator generating a 
one-step time evolution: 

U = exp[ - ( i / h )  fr-At H(t) - H'(t) dt] (21) 
d0-At 
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where we will end up by neglecting the small quantity At. The time evolution 
operator contains the term H' = H(Q' ,  P') ,  where 

O' = Oo - (h /2 )E  (22) 

P' = Po + (h/2)D (23) 

analogous to the Wigner representation of  Grelland (1991). Thus, 

H(t) - H'( t )  = - (h/m)P,,D - hkQ,,E ~(t/T) (24) 

The time scale is chosen such that the period starts at t - At, i.e., immediately 
before the kick. Thus, 

In + 1] = Uln] (25) 

where In] is the state at the end of period n. We divide the period into two 
time subintervals: 

U(0 - At. T - At) = U(At,  T - A t )U( - -A t ,  At) -- U2UI (26) 

where 

Ul = U ( - A t ,  At) = e x p [ - ( i / h )  fff'~, n(t) - n ' ( t )  dt] 

= exp[-(i /h)fa_ta,  ((h/m)P,,D - hkQoE ~(t/T)} dt] 

= e x p [ - { r n - t P o D  2At -- kTQ,,E}] (27) 

since ~(t/T) = 73(0. We choose effectively At = 0; thus the first term of  
the exponent can be neglected, and we obtain 

Ut = exp[ikTQ,,E] (28) 

The second term is 

f r -at  H't" U2 = U(At, T - At) = e x p [ - ( i / h )  aa, ~ ) - H'( t )  dt] 

= exp[( i /m)TPoD] (29) 

neglecting terms proportional to At. As expected, when the potential function 
does not contain higher powers than two, the resulting "Liouvil le" operators 
have the same form as the classical Liouvilleans. However, they act on a 
different state space (cone of  state functions). In the representation generated 
by the Bw basis, we obtain the operator forms 

Ui = e x p [ - ( T p / m )  d/dq] (30) 

U2 = e x p [ -  kTq d/dp] (31 ) 
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Hence (assuming addition modulo 1 of  the coordinates) 

[qptn + 1] = [qpt UIn] = [(1 + kT2/m)q - ( T / m ) p , -  kTq + p)[n] 

= [0-~(q, p)ln] (32) 

where 0(q, p) = (q + (T/m)p, kTq + (1 + (kT2hn)p) is the Arnol 'd cat map 
when T/m = kT  = I. We can avoid using the inverse map 0-~ by considering 
the inverse dynamics, generated by U- 1. In that case we obtain the dynamical 
map of BNS. 

4. EXPONENTIAL DECAY OF THE C O R R E L A T I O N  FUNCTION 

The classical LKS is chaotic (Arnol'd and Avez, 1968). It is a Bernoulli 
system, hence a Kolmogorov system (K-system), and hence a mixing ergodic 
system. It is also chaotic in the sense of having an exponentially decaying 
correlation function. The correlation function is the sequence of matrix ele- 
ments of the operator sequence 

R,, = U"-10] [01  (33) 

where 10] = I k, /], with k = l = 0, is the state corresponding to uniform 
distribution on the phase space, [qp 10] = 1. The exponential decay property, 

[fl R,,Ig] ---) Ae -'~" (34) 

for large n is characteristic of a white noise process, or a deterministic process 
with local exponential separation of the phase space paths, combined with 
confinement. Thus this property is a possible definition of chaos in this formal 
framework. However, it is weaker than the K-property. 

Benatti et al. (1991) have shown that quantum LKS has the following 
properties: 

(i) It has the decay property, [flenlg] ----> 0. 
(ii) It is mixing. 
(iii) It is an algebraic K-system for rational values of  h (Planck's 

constant). 
(iv) It is not an algebraic, nor an entropic, K-system for irrational values 

of h. 

We will strengthen (i) by showing that 

[ft R,,Ig] ---> Ae  -a" (35) 

for the quantum (general) case. 
We introduce the vector notation k = (k, l), z = (q, p); A : (1, 1; 1, 

2) is the matrix of the Arnol'd cat map. A has the eigenvalues h_+ = 
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(3 _+ 5~n)/2. Note  that X_ < 0, such that h_" ---> 0 as n ---> ~.  We define the 
or thogonal  matr ix  

U = (t+, t_; t+(1 + 51n)/2, t_(1 - 5tn)/2) (36) 

where  

t+_ = ___ ((5 --- 51n)/2) - i n  (37) 

such that UrAU is diagonal.  We def ine  the correlat ion functions as the 
matrix e lements  

[k' lU~lk] = fIo,~l [k ' tz]  dz [zlU"lk] 

= ft0.tl exp[2~ri(k • A"z - k '  • z)] dz 

cc (2,rra+n) -2 = 4w2e -an (38) 

where  a = 2 In h+. In the derivat ion we have  assumed  that for  sufficiently 
large n, UrAU can be replaced by (h+, 0; 0, 0). Since [k'10] [01k] = 0 except  
for k '  = k = 0, in which case [k ' lU"Ik]  = [k'10][01k] = 1, we conclude 
that (38) is valid for all k ' ,  k. 
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